North America
Phase Converters
&
Electrical Supply

OPERATION AND
INSTALLATION
MANUAL

ROTARY
PHASE CONVERTERS
(Modelos PL, UL & CP)

240 VOLTS

WARNING: To reduce the risk of injury, the user must read and understand the operator’s manual before using this product.
Table of Contents

Section 1: Introduction and Installation Notes

Section 2: Installation
 2.1 Typical Line Diagram
 2.2 Branch Circuit (Circuit Breaker & Fuse) and Wire Sizing
 2.3 Control Panel Connection
 2.4 Idler Generator Connection
 2.5 Switch Assembly

Section 3: Checking the Converter
 3.1 Checking single phase power

Section 4: Operation & Maintenance
 4.1 Operation
 4.2 Maintenance

Section 5: Trouble Shooting

Section 6: Warranty
Section 1: Introduction and Installation Notes

HIGH VOLTAGE – Risk of Electrical Shock. This equipment is connected to line voltage that can create a potentially hazardous situation.

Your rotary phase converter has been engineered and manufactured to our standards for dependability, ease of operation, and operator safety. When properly cared for, it will give you years of rugged, trouble-free performance.

• Installation of this equipment must comply with all national, state and local electrical codes.

• Installation must be performed by qualified personnel and should have experience working with this line voltage.

• Always make certain power is off before servicing this equipment.

• The input wire gauge must be sized to furnish the single-phase input current (amperage); this wire is larger than the three phase output current to the load.

• Make sure the input voltage is 208-240 before connecting.

• Do not connect control circuits to T3.

• Do not connect a ground or neutral to T3.

• All loads (including transformers) must be turned off before starting phase converter.

• Do not bolt idler generator down solid. This can cause diminished generator life.

• Make sure phase converter control panel, generator and equipment are properly grounded.

• Wire recommendations are minimums. Voltage drop is dependent on wire length and gauge. Increase wire one (1) additional size for every fifty (50) feet of wire run.

• Wire recommendation is based on the use of copper wire. If using aluminum wire, use the copper equivalent for current amount.

• Single phase loads must always be energized by lines T1 and T2.

SAVE THIS MANUAL FOR FUTURE REFERENCE
Section 2: Installation

2.1 Typical Line Diagram

1. Installation must comply with all National, State and Local Electrical Codes.
2. Installation must be performed by a licensed electrician.
3. Rotary phase converter must start first before loads are started.
4. T3 is the generated leg, do not use for single phase loads or control circuits.
5. Do not bolt generator down solid.
6. Rotary phase converter should reach full speed within 2 to 3 seconds.

*See Chart 2.2 for Minimum Single Phase Wire Sizes (Column C)

*See Chart 2.2 for Minimum Three Phase Output Wire Sizes (Column D)

*See Chart 2.2 for Fuse and Circuit Breaker Ranges/Sizes (Columns A & B)
2.2 Branch Circuit and Wire Sizing

Branch Circuit (Circuit breaker and Fuse) Sizing: Your NAPCES rotary phase converter has a minimum and maximum circuit range/size. Your circuit protection can be sized at the minimum, maximum or anywhere between the two amounts.

To determine your single phase branch circuit required to feed your converter and load:

- Add your total 3 phase loads together and multiply by 1.73. This is the amount of single phase current you will draw at full load. This is the minimum single phase service needed to run your phase converter and loads. However, the National Electric Code (N.E.C.) Article 455 recommends multiplying your total phase loads by 2.5.

Examples:

Total 3 phase load(s) amperage X 1.73 = Single Phase Current Draw

Total 3 phase load(s) amperage X 2.5 = Minimum Circuit Protection Size

Wire / Conductor Sizing: Wire sizing is extremely important in order that proper voltage may be maintained during motor start-up. The N.E.C. Article 455.6 governs the wire size of phase converters. Article 455.6 states that the input wire size shall not be less than 125% of the phase converter nameplate input full-load amperes (for variable loads) and/or not less than 250% of the sum of the full-load 3-phase current rating (for variable and fixed loads).

Minimum wire size recommendations are listed in the chart above. These wire recommendations are for wire runs of fifty (50) feet or less. Increase the wire size one (1) size for ever additional fifty (50) foot run.

Note – Wire recommendations are for copper wire. If using aluminum wire, use the copper equivalent for current amount.
2.3 Wire Connection

All NAPCES rotary phase converters are equipped with power distribution blocks for wire terminations.

Single phase input power connections are labeled L1 and L2.

Output idler generator and load power connections are labeled T1, T2 and T3.

T3 is the manufactured leg of power.

Here is an illustration of the wiring connections:

![Wiring connections illustration]

*Front view of power distribution blocks

<table>
<thead>
<tr>
<th>Recommend Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 14 AWG</td>
</tr>
<tr>
<td>8 AWG</td>
</tr>
<tr>
<td>6 - 2/0 AWG</td>
</tr>
<tr>
<td>1/0 - 400 MCM</td>
</tr>
</tbody>
</table>

2.4 Idler Generator Connection

For 9 Lead Wire Idler Generators (Motors) - ODP – All Sizes and TECF – 3HP, 5HP, 7.5HP and 10HP

Connect the idler generator according to the nameplate wiring diagram. Your 9 wire lead connection is most commonly referred to as a wye connection.

Connect wire leads 4, 5 and 6 together. Insulate this connection with electrical tape of heat shrink tubing. These 3 leads are connected to each other and NOT to any other wires.

Now, connect wire leads 1 & 7 to T1 in the control panel, wire leads 2 & 8 to T2 in the control panel and wire leads 3 & 9 to T3 in the control panel.
For 12 Lead Wire Idler Generators (Motors) – TEFC - 15HP, 20HP, 25HP, 30HP, 40HP and 50HP

Connect the idler generator according to the nameplate wiring diagram. This 12 wire lead connection is most commonly referred to as a delta connection run.

Connect wire leads 1, 6, 7 & 12 to T1 in the control panel, wire leads 2, 4, 8 & 10 to T2 in the control panel and wire leads 3, 5, 9 & 11 to T3 in the control panel.

Here is a line diagram for reference:

Finally, properly ground idler generator to earth ground.

*Note – this is low voltage. Low voltage is 208 – 240 volts.

2.5 Switch Assembly

On the front cover of the control panel, press the “red” stop button. While doing this, look at the back side of the panel cover and note on which side the “red” tab pushes forward.

Securely push the terminal blocks into the back of switch. The “red” terminal block matches the “red” tab.

Lastly, slide the tab on top of the terminal blocks to the right (when looking at the back of the switch) to lock the switch terminal blocks into place.

Section 3: Checking the Converter

3.1 Checking Single Phase Line Voltage

Measure the single phase utility input supply voltage between L1 and L2 with a voltmeter and record. It should measure between 220 and 245 on a standard single phase system. **Note** – If your input voltage is too high, you may need to install a buck-boost transformer to decrease the voltage. Please contact NAPCES; we carry a complete line of buck-boost transformers.
Input Voltage L1-L2 _____________

3.2 Checking Three Phase Output Voltage

Start the rotary phase converter. Press the “Green” Start push button. A light between the start and stop buttons will illuminate. The phase converter should reach full speed within 2 – 3 seconds. **Note** – If the phase converter does not start in 5 seconds, turn it off.

Measure the output line-to-line voltages at the phase converter and record. This is done by measuring between the three (3) combinations of output terminals. (T1-T2, T1-T3 and T2-T3).

Output Voltages T1-T2____________, T1-T3____________, T2-T3____________

T1-T2’s voltage should be the same or within 1-2 volts of L1-L2. T1-T3 and T2-T3 should measure 5 – 15 volts higher than T1-T2 without a load running. Once a load is applied, these voltages will drop down closer together.

Note – If voltage is too high, capacitors can be removed. If voltage is too low, capacitors can be added.

Note – **Line-to-ground voltage are not relevant.** However, T1 and T2 should measure @120 to ground and T3 should measure between 190 and 250 when measuring to ground.

You can now start your loads. **Note** – If a load motor rotates backwards, switch any two (2) connections at the load.

Section 4: Operation & Maintenance

1.1 Operation

1. A NAPCES rotary phase converter may operate continuously with or without a load.
2. DO NOT start the phase converter under load.
3. Wait until phase converter reaches full speed before starting loads.
4. If possible, avoid starting more than one load at the same time.
5. Turn rotary converter off if excessive noise or vibration occurs.

1.2 Maintenance

Your NAPCES converter requires very little maintenance. We recommend periodic lubrication, cleaning and inspection.

Lubrication

All NAPCES rotary phase converters generator bearings are pre-greased by the factory. This initial greasing generally will last the lifetime of the generator; however, a squirt of grease may be needed from time to time.

Recommended grease – Exxon Polyrex EM Bearing Grease
Cleaning and Inspection
1. Inspect the rotary converter from time to time.
2. Make sure all vents are clear and clean.
3. Clean off dust, dirt and any debris buildup on the generator. This can insulate the generator and cause overheating.
4. Open control panel and inspect power and control components.
5. Check all wires for loose connections, cuts/nicks or damage. Clean, tighten or replace if necessary.